
SEMIEMPlRICAL THEORY OF TURBULENT TRANSFER 

A. To O n u f r i e v  

A c losed s y s t em  of equations is cons t ruc ted  for  flow of a nonisotropic c h a r a c t e r  on the 
assumpt ion  that the mixing path length is not smal l  c o m p a r e d  with the cha r ac t e r i s t i c  
dimension of the s t r e a m .  It is a s s u m e d  that the velocity pulsation field can be c h a r a c -  
t e r i zed  by a multipoint  distr ibution function, which sa t i s f ies  the continuity equation. This 
enables  equations to be obtained for  the one-point  and two-point  distr ibution function. A 
s e r i e s  of a ssumpt ions  is made concerning the nature of the fo rces  acting on the turbulent  
format ion  (" turbule" or  vortex) in the s t r e a m  and concerning the co r re la t ion  t ime of the 
random force with the scale  and intensi ty of the turbulence.  Assumpt ions  are  a lso  made 
concerning the express ion  of the in tegra l  in the equation for  the one-point  distr ibution 
function and the express ion  for  the co r re l a t ion  tensor  in the i sot ropic  case .  After  the 
moments  a re  calculated,  a s y s t em  of Reynolds '  equations is obtained in which approx ima-  
t ions,  usual ly  acceptable  f rom dimensional  cons idera t ions ,  follow for a s e r i e s  of t e r m s .  
Here ,  this is a consequence of the approximat ions  for  the fo rces  in the equation for  the 
distr ibution function. Closing the s y s t e m  of equations for  the moments  reduces  to solving 
the equation for  the distr ibution function. It turns out that the in tegra l  c h a r a c t e r  of the 
t r an s f e r  (diffusion of a nongradient  type) is connected with taking t h i r d - o r d e r  moments  
into account.  A s e r i e s  of examples  of flow is cons idered ,  and values of the e m p i r i c a l  con- 
s tants  a re  de te rmined .  The s y s t e m  of equations obtained enables  us to consider  flow with 
s t rong anisot ropy of turbulent  t r ans fe r~  

The commonly  known resu l t s  in the theory  of turbulent  t r ans f e r  re ly  on the equations for  the second 
moments  and dimensional  cons idera t ions  for  express ing  the appropr ia te  t e r m s  in the equation of turbulent 
ene rgy  balance by way of the intensi ty  and scale  of the turbulence.  They are  contained in the invest igat ions 
of A. N. Kolmogorov,  L. Prandel ,  J .  Rotta, e tc .  (a bibl iography and rev iew of these paper s  can be found 
in [1])o 

At tempts  have been made in a s e r i e s  of pape r s  to descr ibe  the p r o c e s s  of turbulent  t r a n s f e r  by 
applying the kinetic equation [2], and a lso  using an analogy with the p r o c e s s e s  of neutron t r an s f e r  and 
radia t ion [3, 4]; the appropr ia te  b ibl iography is given in [4]. 

1o A M o d e l  of  T u r b u l e n t  T r a n s f e r  

It is a s sum ed  that the multipoint distr ibution function which can be used to c h a r a c t e r i z e  the velocity 
pulsat ion field, f (N) (qi' Pi '  T, X) (i = 1 . . . . .  N) (qi a re  the coordina tes ,  Pi a re  the momenta  of the format ions ,  
T is the t e m p e r a t u r e ,  and X is the concentra t ion of additive) sa t i s f ies  the continuity equation 
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(only flow with small  variations of temperature  and concentrat ion is considered,  so that quantities with a 
fluctuation of density ought to be neglected everywhere ,  apart  f rom the te rm with the accelerat ion of 
gravi ty  [1] .) 

The s implest  assumption is made as regards  the scales  of the s t ruc tures .  At each point in the s t r eam 
the dimension of the turbules is charac te r i zed  by one value of the scale proport ional  to the integral scale of 
the corre la t ion,  associa ted with the length of the mixing path, defined as the distance charac ter iz ing  the loss 
of corre la t ion between the initial and final positions of the turbule [5]. 

The joint distribution coefficient for n points 

sat isf ies  the equation 
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One of the fundamental assumptions concerns  the form of the expression for the force acting upon a 
turbule.  It is assumed that this force consis ts  of two par t s :  the f i rs t  par t  F i = (dPi/dt)l  descr ibes  the 
hydrodynamic interaction of the turbule with the flow because of the existence of a relative velocity, and 
has a fo rm s imi lar  to that for the force acting upon a sphere of radius L; the second par t  is associa ted with 
the action of the p res su re  pulsations on the turbule. This is a random force and is a function of all the 
field coordinates ,  The method of random forces  for describing the field of a turbulent flow was employed 
by E o A~ Novikov in [6]. It is assumed that the p res su re  pulsations change fa i r ly  rapidly compared  with 
the change in the distribution function, and the force associa ted  with their  interaction has a corre la t ion 
time r. Equation (1.2) can then be integrated within the limits of the time corre la t ion from - r  to 0 to 
give [7] 

ot F - -  /( .)  , o F( a& ~ .(n)] [ ~r ~<n>l - - -  aq~ ~ ~ L k ~ &  I ] + ~ [-~7/ ] 
(1.3) 
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Here W(Ap) is the probabil i ty that the momentum will depart  f rom its average value by Ap~ Since 
Eqs. (1.3) cannotbe solved exactly we shall at tempt to use them to obtain expressions for the one-point dis-  
tr ibutions as functions of the field pa r ame te r s  for an inhomogeneous s t ream,  

We t akey  40 = f  for n = 1, and 

o [p~ ] o [ (_~ )  ] e ar e dx el + ~  -EI + - -  (1.4) 

The following approximate expression is used for the integral of the right side: 

I / ( p  -- •  W (ap) d (ap) = / o  

~Y'E J <z'~> ' 

Here f0 is the local-equilibrium value of the distribution function. The considerations leading to this 
approximation are purely qualitative and are based on the fact that this state of affairs holds in the case of 
complete equilibrium, and on the fact that this approximation is widely used in the kinetic theory of gases, 
although the meaning of the right side is different there. 

Following the usual practice, we have recourse to dimensional considerations to obtain a relation for 
the quantity r, 

"~ = ALE- ' / ,  (1.5) 
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where A is an empi r i ca l  constant .  Equation (1.4) can then be s impl i f ied considerably:  

Severa l  re la t ions  must  be a s s um ed  for  the quantit ies F i = (dPi/dt)~ , dT/d t  and d• They a re  based  
on expe r imen ta l  data concerning the p r o c e s s e s  of fr ict ion,  heat exchange,and mass  exchange for  a body 
moving in a fluid. In pa r t i cu l a r ,  we a s sume  

, 3a~_o ( 1 . 7 )  o<~> gt~(x~,z)-[C]u~ SL Fi p Oxi 

Here the r e s i s t ance  force is approx imated  by an express ion  which is valid for large values of the 
local Reynolds '  number  (see also [3, 8]). 

It would be des i rable  to re ta in  the in tegra l  c h a r a c t e r  of the solution for  the distribution func t ions f  
a n d f  (2) complete ly ,  but this could be done onI.y for the func t ionf .  A complete  theory  could be developed if 
a more  sa t i s f ac to ry  r ep resen ta t ion  o f f  andf(2)could be obtained. 

2. The Equations.  Multiplying Equation (1o6) by the quantity Q(u, T, X) and integrat ing comple te ly  
with r e s p e c t  ot the var iab les  u, T, )/, we obtain the t r a n s p o r t  equation 

@> <q> @> - - > (2.1) 

Assuming that  Q = 1, uo~, u 2 ,  u~ufi, T, u(~T, T 2, X, utix, )~2 we can obtain equations for  the average  
quantit ies and the second moments  (we do not sum with r e spec t  to ~ and fl). Fur the r ,  it is a s sumed  that 
the quantity <p) is a constant .  St r ic t ly  speaking,  this means that the value of the energy  of the pulsating 
motion is constant  in the s t r e a m .  In consider ing the whole s t r e a m ,  including regions  close to a solid wall 
or  a f ree  boundary,  where this condition is violated,  we have to introduce the quantity <p>, "the turbulen t -  
s tate density of the s t r e a m " ,  which is a s soc ia t ed  with the in te rmi t tence  coefficient ,  and t r ea t  the s t r e a m  
as consis t ing of two s ta tes  of medium: l amina r  and turbulent .  

The continuity equation is 

a <%> 0 (2.2) 
Ox k 

The equation of motion for average values of the velocity is 

~ 0 <P> 
-~t <~> + [<u~> <u~> + <u~'uk'>l = <p> Ox~ g6 (xi, z) (2.3) 

The ~quations for components of the Reynolds' stress tensor are 

0 <u~>' 0 <%> 
J-i t ..... u~ ~ t ~~ [ <u~> <~Ju~'> + <u~'uJuj> ] + <~'u~'> ~ + <uj~'>- a~ 

<P'%'> ~ ' z)-- <P'Ua'> ~ " :=--g  ~ o t x : , ,  g ~ O ( x ~ ,  z)--<iClu/u~'>3ao/4L-5 ~-1[~/3E6(a,~)--<uJuS>] 

(2.4) 

The ene rgy  equation is 

oc T <T> ~ ~ d <P> 
at + [Cp <T> <u/t> ~- Cp <T'uk'>] - <9> dt 

The equations for vector components of the turbulent heat flux are 

a Cv<T,u(>+<u(u~,> aCp<T> ~-~ a<~> , 0 p "T' ' "" a---t" 0% ax~[<u~><CpT'u~,'>] +CP<T'uk'>~x~ T ~ ' ~ P < '  uiu~)  

3ao i d<P> <p'u(> --~-I<CpT'u(>--Cv<T'p'>gS(x~ ' z) 
_-: -- C v <T'u([ C I> St <p> dt <p> 

(2.5) 

(2.6) 

The equation for intensi ty of t e m p e r a t u r e  pulsat ions is 

0 Cp (T 'e> Cp 0 _~._vi_.~z[<u~><T,~>+<T,~u/>] ~_Cp<T,uk,> o<T>ox~: - <p>i d<P>dt <p'Y'><p> 
ot 2 

(2.7) 
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Equations relating to the concentration field are not written out here.  Equations (2.2)-(2.7), (1.6),and 
(1.5) and the equation for the scale size (which is given in the next section) comprise  a closed sys tem.  
Th i rd -o rde r  moments appearing in the equation for the second-order  moments must  be defined using the 
solution for the distribution function. We take the express ion <l C I ~ ~ > for the quantity ~E'/~<u~'as'~ , 
etc.  

3. The Equation for the Scale L. An approximation equation for L is obtained by integrating the 
equation for the second-rank corre la t ion tensor  and averaging with respec t  to angle, as was done by Rotta 
[9]. The difference lies in the fact that the initial equation and approximate express ion for the th i rd -o rde r  
moments in Rotta 's  paper are obtained on the basis of Equation (1.3) for the distribution function f{2! 

This equation is multiplied by u (a)uo (b) and integrated over all variable space. The equation of motion ~x p 
at points a and b and the continuity equation are used, and as a result  we obtain a t ransfer  equation in the 
following form.  We introduce the following variables:  the distance between the points a and b in the s t r eam 

the coordinates xk(ab) : and 

~ __ J5 )  - (.a> Z(ab) = 1/,~ [X (b) "t- X(k a)] k - -  '~'R - - ' ~ k  ) 

0 / , ' ( a )  " (b ) \  " " [ 
[ ~ J k Ox~ 1 

§ @ [ < ~ ) >  § <i~(kb)>] Ox[ab_____~ <tt~a)/.t~b)> § [<It(kb)> __ <//.(a)> ] ..~..~ <it~a)gt;,b)> 
(3.1) 

0 [ < ~ } ~ ) u ) ? ) ~ ( b ) >  _ <..(~.) . . r  

= - g<5(x~, z) <p'(a)@)> <Z(%'<a), C ~ ~); 2 3no <~> - g 6 ( x ~ , z )  <P> <l (~ ( " ) ' ' ~  
.. 8L(~) 

[' .(a). (b)~_ 1 ~ F du ('0 du ~ 
8L(b) 

Clearly,  the scale is not a sca la r  quantity in the general  case .  However, in the f i rs t  approximate 
t rea tment  involving a whole ser ies  of simplifying assumptions (one of which is the introduction of only 
one average scale at a point), it is convenient to contiude considering the s implest  case .  We thus proceed 
as follows: we write down the equation for the sum <w~a)u~O)> , integrated at the point (ab) with respect  to 
the distance ~ between the points a and b, and with respec t  to angle, to obtain the average values 

It is assumed that the last te rm,  which depends on p re s su re  pulsations, has the form ~ - ~  <u'(~ ~) u~b>~ 
. and that it can be connected with the t e rms  corresponding to dissipation. In addition, we take 

I <u~(~)u~(b)> d~ df~ ~ (u~'2> L -- 2LE,  f (u~)u'~O))' d~ d~ ~ 2L <uk'uz' > ~o 

As a result ,  we obtain the following approximate equation for L: 

O.~ot (LE)@ ~oL <u~'u~') ax~ § <u~> .(LE) 
( 3 . 2 )  

To determine the functional form of the th i rd -o rder  moments for the inhomogeneous case,  we consider  
the following very simple model: p re s su re  pulsations play the main par t  in the equation f o r f  (2) and so 
res i s tance  forces  can be neglected. We can then consider  the case of the s teady-sta te  field when the 
equation for f(2) in the coordinates ~k,Xk(ab) has the form 

% ( ~ y > +  u(p) al<~>t ax<2b)+ (~!2)_ ~b))al(~)/a~ = ~-~ ( e  - I(~)) ( 3 . 3 )  

In the homogeneous case f(2) depends only on ~ and sat isf ies  the equation 

( u(~:) - ~(P) a/Co'>/a~ = ~-: ( F - - / (p)  
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A correction to the expression for the homogeneous case is obtained by inserting the value of~ 2) in the 
expression for f0 (2) from (3.3) 

1<~) = e - ~ (~a) ~ ) )  a/<~) I a ~  V :  (~~ + ~,~b)) 0/<, / ax(2 ~) ~ ~<~ ' - - - ,o - / :  (u(:) + ~ ) )  a / (p  [ a x l  ~b) (3 .4)  

The pa rame te r s  E, L, <a,~> in this express ion must now be taken as functions of the coordinates .  
On differentiation the derivat ives 

8 E l O x ~ ,  OL/Ox~,  u ,@<u,~>lOx k 

can appear  on the r ight-hand side. 

If it is assumed that the fourth-  and f i f th-order  "semi- invar iants"  (cumulants) [1] are  equal to zero ,  
the fourth moments can be expressed  in t e rms  of the second, while the fifth moments,  which turn out to be 
proport ional  to the third in the approximation of weak inhomogeneity under consideration,  can be neglected. 
In par t icular ,  we can write 

. ,(a). "(b). "(b) . . . .  "(~). "(b). "(b) ~ __~ ,  [T1,LE-~/~ <tt'i(a)lt~(b)u'k(b)u'l( )> 0 E  / 0X l 

,,,, '1" T:- ' ]2 , , ' (a)  ' (b)7, : (b) , , ' (ab) , , : (  )> O <U,:n> ] 

<u~(~)u}b)> <u~(b)u~ ( )> -}- <u~(~)u; ( )> <u~(b)u'~(~)> ] X [T(LOE / OXz + T~'EOL I Oxz] 

After integrating with respec t  to angle and distance between the points, we obtain 

u,u ,  u,~ '  liT1 L a_~xE z %E a--~zL ] (3.5) 

The magnitude of the constants ~I and 3/2 rn~t be determined from experimental data. Inserting Eq. 
(3.5) in (3.2), we obtain the final equation for the scale 

o<~.> ,~ o { [<%,u~,> ' ; ' ' ] L/y~  'u " \  ~ J_ <u i u~ > <u~ u 1 > 

at z (3 .6)  

[yILOE ] Ox~ Jr- T~EOL / Ox~]} - -  a~E~:,3ao [ 4 - -  2 ~ g L  <p" 'Uz '\~ / <p> 

This equation agrees  with the equation for the scale obtained in Rotta 's  paper  [9], which involved a 
se r ies  of relat ions and hypotheses for the spec t ra l  functions in its derivation. 

4. The equations given above re fe r  to developed turbulent flow and do not allow for p rocesses  con- 
nected with molecular  diffusion. A t rea tment  of flow in the region where the effect of viscosi ty is impor-  
tant requires  that third moments should be co r rec t ly  allowed for, since they play a deciding part  in this 
region.  

The magnitudes of the third moments must be determined f rom the solution of the equation for the 
distribution function. A simple form of the solution f o r f  cannot be obtained. We shall thus const ruct  an 
approximate solution which co r rec t ly  allows for the fundamental charac ter i s t ic  of the turbulent t ransfer  
p r o c e s s :  the generation of turbules and their propagantiou over  large distances.  The effect of resis tance 
forces  is neglected in the equation for the distribution function although the corresponding te rms  ,are, 
general ly  speaking, not small ,  and plane flow is considered in which the flow pa rame te r s  are  functions 
of the t r ansver se  coordinate only. In this case ,  

, al 
~ ~ = ~  -1 (/o _ / )  

~ 
/ (y, uy' <0) = i / 0  exp - d,~ ~ ~1%'[ 

y 

i [ 1 ds ds 
/ ( y ,  u~'>0) = /0exp -- J ~-7-g7'/-TgY' 

--oo s V J Y 

(4 .1 )  

The equation for the frict ional s t r e ss  has the form 

d d (ux> __ __ ~-1 <ux,uv, ) (4.2) 
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When the quan t i t i e s  

( u S u v ' }  = l (u~ - -  (u~)) u v / d u f l u f l U z  

( uu '2} = ! uu2/duxduvcluz 

(ux 'uu '2}  = I (u~ - -  (~t~) ) u~2/duxdu~du~ 

(4.3) 

have been  calculated, we can make a direct substitution to check that Eq. (4.2) is satisfied. However, Eq. 
(4~ for the frictional stress describes integral transfer for large values of the mixing path, and conse- 
quently, diffusion of the nongradient type is equivalent to taking third-order moments into account. 

We also note that the approximatior~s for the forces acting upon a turbule, assumed in the equation 
for the distribution function, led to expressions which were applied for components containing pressure 
pulsations and were introduced from dimensional and physical considerations. However, there was a dif~- 
ference in the term characterizing energy dissipation. Usually the isotropic expression is used: 

~/4aoL-1E'/~6 ((z, [3) 

Here ,  however ,  the e x p r e s s i o n  

3/~aoL-1E'l~ (u~'u~'} 

was  obta ined ,  Joe., e n e r g y  d i s s ipa t ion  for  c o m p o n e n t s  of the k ine t ic  e n e r g y  of the pu l sa t ing  mot ion,  for 
example  (u~ '~} , is  p r o p o r t i o n a l  to the quant i ty  ~ E ~/~ ( u x  '~) , and is  not taken to be one th i rd  of the ove r - a l l  

magni tude  of e n e r g y  d i s s ipa t i on .  

5 .  T h e  P l a n e  S t e a d y - S t a t e  F l o w  o f  a T u r b u l e n t  S t r e a m .  

We shal l  c o n s i d e r  a p lane ,  s t e a d y - s t a t e ,  i s o t h e r m a l  s t r e s s  once more  for the ea se  in which the s t r e a m  
p a r a m e t e r s  va ry  in the d i r ec t i on  of the y axis  only.  The ve loc i ty  of the s t r e a m  U is  in the d i r ec t ion  of the 
x ax i s .  

A Laye r  of Cons tan t  F r i c t i o n a l  S t r e s s .  The flow is c o n s i d e r e d  fa r  f r o m  the wall  (the effect  of v i s -  
cos i t y  can be neglec ted) .  The t h i r d - o r d e r  m o m e n t s  a re  z e r o .  We then in t roduce  the d i m e n s i o n l e s s  quart- 

title s 

U + = Uv~l~  y+ = y v , v - x  

As a r e su l t ,  we obta in  (B = 1 + 3 / 4 a o A )  

; u ~ ' u , ' )  v 7  -2 = - -  t 

d g  + B (uz'2,~+ (E+)'A (E+)~/, 
- - 2  dy + - -  AL  + @ ~/a AL*  

S (u'u'2)+ (E+)~h = 2[a (E+)"h 

AL* AL* 

dU+ ao(E*) ~/~ :u '  '~\+ dU+ - -  B (E*) ~h 
dy + 3/a L ~ ' " Y / ' dy* AL'- 

- - ~ L +  dy* --  '~ dy + [ " " L E+ \ @ E ~  @ + 2 dL+ - ~  ~sa0 

These  equa t ions  give 

L + 
dU+ __ 3an (E+) 3h <Ux'~>+ 2 (3B-- 2) 
dy + 4 ' E + 3B 

<u yt2> + 2 

E *  - - "  3 B  ' l_ aoA  J 

dy + L + = const = ~o 2 dy*  .] 
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From the last relation, we have 

and from the first 

L + = ~oy + 

3aoB%f 2 \%. y+= 
U+ = Co + ~  < a-Z-j) In Co + ~ - ' l n v  + 

i.e., a logarithmic law for the velocity distribution, well known in this case. The value of the constant is 
= 0.40~ We also take fi0 = 0.40, a 0 = 0.345~ Then a0A = 4/3 and A = 3.86. For these values of the con- 

stants, the relations given above lead to 

E + = 2,44 <u~'~> = 3,24, <uu'2> = 0,81 

These values are in satisfactory agreement with experimental data [10]. 

Isotropie Plane Flow behind a Grid. For isotropic flow the equations can be simplified considerably 
s ince  

<u~'~> = <u~'2> = < u / 2 >  = V~E 

V i s c o u s  f o r c e s  can  be n e g l e c t e d ,  the v e l o c i t y  U i s  cons t an t ,  and  we have the equa t i ons  

dE E%3ao dLE  %E%3ao 

U-'-dz -- 4L ' tt ~ 4 

Here third-order moments are also neglected. The relation for the invariant of L. G. Loitsyanskii 

[11] 

A = EL1/ (1 -% ) 

fo l lows  f r o m  the e q u a t i o n s ,  and  so % = 0.8 s ince  1 - ~s = 1 /5 .  

The func t ions  

L ~-~ x~ E ~ x -'~ 

can  then be found e a s i l y .  

Th is  c o r r e s p o n d s  to the f a m i l i a r  r e s u l t s  of A. No K o l m o g o r o v .  

F low i n a n  A e r o d y n a m i c  P i p e .  In th i s  c a s e ,  i t  i s  a s s u m e d  tha t  the s c a l e  L i s  c o n s t a n t  and  p r o p o r t i o n a l  
to the d i m e n s i o n s  of the g r i d  d i v i s i o n s .  Thus ,  the equa t ion  [12] 

dE 3 (+)3/2 A " 
dt = - -  - ~  --7--- E%~ A "  = i . O - -  t .  2 

i s  va l i d .  

Here  l i s  the long i tud ina l  i n t e g r a l  s c a l e ,  i .eo, a quan t i ty  p r o p o r t i o n a l  to L (c lose  to AL s ince  th is  
va lue  a p p e a r s  in the index  of the exponen t ) .  In th i s  c a s e ,  the equa t ion  for  E i s  

d E  / dt  = - -  3/4 aoL-1E 3/2 

C o m p a r i n g  these  two r e l a t i o n s ,  we have the e s t i m a t e  

l ~ 4 L / 3 a o  = A L  

which  c o r r e s p o n d s  with the value  a s s u m e d  p r e v i o u s l y , 3 / 4  aoA = 1. 

6. P a s s a g e  to the  L i m i t i n g  R e l a t i o n s  of the M i x i n g - P a t h  T h e o r y  

The system of equations describes turbulent transfer without assuming that the size of the mixing 
path L is small~ Mixing-path theory was developed by L. Prandtl on the basis of similarity with molecular 
transfer in the continuous medium regime when L is small compared with the characteristic dimension of 
the problem. We arrive at the model of mixing-path theory if we assume that for L ~ 0  the quantities 
and <u/u~'> (i :#= ]) are small f irst-order quantities, while E has a finite value. In order for these conditions 
to be satisfied, we must assume that a 0 -*0. All these conditions are inconsistent, since in turbulent flow 
the quantity <ux'au;>, is not small compared with E, for example. 
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Under these conditions, the initial equations (not allowing for viscosity) give 

<uj~> = 2 / 3 E  - -  2v'0 (u~) / Ox~ 
<uju~'> = -- v' (0 <u~>/0z~ + 0 <~> / Ox~) 

% <T%'> = -- k'0% <T) /0x~ 
v" : k' = 2/3ALE ~/,, P '  = v' / k' = l 

The expression for the coefficient for turbulent viscosi ty  then becomes a sca la r .  

If we do not make the limiting transit ion L ~ 0 ,  we obtain an express ion for the turbulent Prandtl  
number  P' which is different f rom unity. We t rea t  the par t icu lar  case of p lane-paral le l  motion (without 
allowing for viscous forces  and th i rd -o rder  moments):  

AL du 
(Ux'U"')--  - -  (i-~3aoA/4)E V' \~u ) dy 

A L  dcp <T> 
c p ( T ' u y ' ) : -  ( t+3aoA/~)E% <u.v'2 ) dy 

and we have in this case 

p,__ i§ __3] 4 
+ 3/4aoA 

for the values assumed for the constants. 

The constants a0, A, C~s, t0, YI, Y2 appeared in the equations. The values of a s and A are determined 
from the relationships following from the equations, as we saw above, while the remainder come from 
comparison with experimental data. 

These very simple examples show us that the system of equations obtained enables us to describe 
the familiar laws, and allows us to consider nongradient-type diffusion and the nonisotropic behavior of 
components of the kinetic energy of the pulsating motion, It also enables us to introduce nonisotropic 
turbulent viscosity which turns out to be important in a series of problems concerning turbulent flow in a 
stratified medium~ 
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